how to download stock data:
- by url:http://wenku.baidu.com/view/fd408c4ee518964bcf847ca3.html
- by java:https://my.oschina.net/875881559/blog/99729
import pandas as pd to import pandas library.
DataFrame
一个二维、大小可变的、扁平的表型数据结构;它也有轴线,即行和列,因此可以沿着行和列进行数据运算。 可以认为这是一个类似于字典的序列对象容器。是pandas最主要的数据结构。
see also
- DataFrame.from_records constructor from tuples, also record arrays
- DataFrame.from_dict from dicts of Series, arrays, or dicts
- DataFrame.from_items(http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.from_items.html#pandas.DataFrame.from_items) from sequence of (key, value) pairs
- pandas.read_csv, pandas.read_table, pandas.read_clipboard
how to create a DataFrame
from a source file
- pd.read_csv(filePath)
如果文件以逗号:,进行字段分割,可以直接使用上述代码从源文件中抽取数据构成一个DataFrame对象。
**pd.DataFrame()
-
Parameters:
- data : numpy ndarray (structured or homogeneous), dict, or DataFrame Dict can contain Series, arrays, constants, or list-like objects
- index : Index or array-like Index to use for resulting frame. Will default to np.arange(n) if no indexing information part of input data and no index provided
- columns : Index or array-like Column labels to use for resulting frame. Will default to np.arange(n) if no column labels are provided
- dtype : dtype, default None Data type to force, otherwise infer
-
copy : boolean, default False Copy data from inputs. Only affects DataFrame / 2d ndarray input
- examples
left = pd.DataFrame({'A': ['A0', 'A1', 'A2'], 'B': ['B0', 'B1', 'B2']}, index=['K0', 'K1', 'K2'])
A | B | |
---|---|---|
K0 | A0 | B0 |
K1 | A1 | B1 |
K2 | A2 | B2 |
>>> other = pd.DataFrame({'key': ['K0', 'K1', 'K2'],
'B': ['B0', 'B1', 'B2']})
>>> other
B key
0 B0 K0
1 B1 K1
2 B2 K2
pd.fillna(method=None,inplace=True)
-
method=’ffill’
向前填充空值
-
method=’bfill’
向后填充空值
-
inplace=True
直接修改DataFrame里面的数据,从而影响跟该DataFrame相关的所有的视图等。